INSTRUCTIONS:

This quiz is open-book and open-note, and you may work with your classmates. Please answer all questions and show all of your work.

GIVEN:

A spring inside a ballpoint pen fails catastrophically during normal use. The spring breaks and ejects violently from the pen, hitting the user in the eye, causing significant injury. We've been asked to investigate the incident to determine if this failure is due to defective design, inadequate testing or quality control, a material defect, or something else.

The helical compression spring, as designed, is made of no. 6 music wire. The outside coil diameter of the spring is 4.5 mm.

The ends are squared and there are 14 ¹/₂ total turns. *Note that "closed" and squared" are synonyms.*

FIND:

If the spring material is yielded during normal use. We'll break that task down into the below steps:

- a) The torsional yield strength of the wire, S_{sy} .
- b) The static load corresponding to the yield strength, F_{y} .
- c) The spring rate, k.
- d) The deflection that would be caused by the load in (b), y_y .
- e) The solid length of the spring, L_s .
- f) What length should the spring be to ensure that when it is compressed solid and then released, there will be no permanent change in the free length?
- g) Given the length found in (f), is buckling a possibility?
- h) The pitch of the body coil, p.

BONUS:

With a pair of calibrated calipers, measure the length of a spring inside an exemplar pen. Is the free length appropriate?

(a) THE STRENGTH OF SPRING WIRE DEPENDS ON THE WIRE SIZE, d. FROM TABLE A-28 IN SHIGLEY:

Twist Drill	Stubs Steel Wire	Music Wire	Steel Wire or Washburn & Moen	Manu- facturers Standard	United States Standard†	Birmingham or Stubs Iron Wire	American or Brown & Sharpe	Name of Gauge:
Twist Drills an Drill Ste	Steel Drill Rod	Music Wire	Ferrous Wire Except Music Wire	Ferrous Sheet	Ferrous Sheet and Plate, 480 lbf/ft ³	Tubing, Ferrous Strip, Flat Wire, and Spring Steel	Nonferrous Sheet, Wire, and Rod	Principal Use:
			0.490		0.500			7/0
		0.004	0.461 5		0.468 75		0.580 0	6/0
		0.005	0.430 5	mangar and	0.437 5		0.516 5	5/0
		0.006	0.393 8		0.406 25	0.454	0.460 0	4/0
		0.007	0.362 5	h = h	0.375	0.425	0.409 6	3/0
		0.008	0.331 0	1018-0	0.343 75	0.380	0.364 8	2/0
		0.009	0.306 5		0.312 5	0.340	0.324 9	0
0.228 0	0.227	0.010	0.283 0	Des 121 a	0.281 25	0.300	0.289 3	1
0.221 0	0.219	0.011	0.262 5	1.	0.265 625	0.284	0.257 6	2
0.213 0	0.212	0.012	0.243 7	0.239 1	0.25	0.259	0.229 4	3
0.209 0	0.207	0.013	0.225 3	0.224 2	0.234 375	0.238	0.204 3	4
0.205 5	0.204	0.014	0.207 0	0.209 2	0.218 75	0.220	0.181 9	5
0.204 0	0.201	0.016	0.192 0	0.194 3	0.203 125	0.203	0.162 0	6
0.201 0	0.199	0.018	0.177 0	0.179 3	0.187 5	0.180	0.144 3	7
0.199 0	0.197	0.020	0.162 0	0.164 4	0.171 875	0.165	0.128 5	8
0.196 0	0.194	0.022	0.148 3	0.149 5	0.156 25	0.148	0.114 4	9
0.193 5	0.191	0.024	0.135 0	0.134 5	0.140 625	0.134	0.101 9	10
0.191 0	0.188	0.026	0.120 5	0.119 6	0.125	0.120	0.090 74	11
0.189 0	0.185	0.029	0.105 5	0.104 6	0.109 357	0.109	0.080 81	12
0.185 0	0.182	0.031	0.091 5	0.089 7	0.093 75	0.095	0.071 96	13
0.182 0	0.180	0.033	0.080 0	0.074 7	0.078 125	0.083	0.064 08	14
0.180 0	0.178	0.035	0.072 0	0.067 3	0.070 312 5	0.072	0.057 07	15
0.177 0	0.175	0.037	0.062 5	0.059 8	0.062 5	0.065	0.050 82	16
0.173 0	0.172	0.039	0.054 0	0.053 8	0.056 25	0.058	0.045 26	17

d=0.016 in = 0.41 mm

FROM TABLE 10-4 IN SHIGLEY:

Material	ASTM No.	Exponent <i>m</i>	Diameter, in	A, kpsi∙in‴	Diameter, mm	A, Mpa · mm ^m	Relative Cost of Wire
Music wire*	A228	0.145	0.004 to 0.256	201	0 .10 to 6.5	2211	2.6
OQ&T wire [†]	A229	0.187	0.020 to 0.500	147	0.5 to 12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028 to 0.500	140	0.7 to 12.7	1783	1.0
Chrome-vanadium wire§	A232	0.168	0.032 to 0.437	169	0.8 to 11.1	2005	3.1
Chrome-silicon wire	A401	0.108	0.063 to 0.375	202	1.6 to 9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013 to 0.10	169	0.3 to 2.5	1867	7.6 to 11
		0.263	0.10 to 0.20	128	2.5 to 5	2065	
		0.478	0.20 to 0.40	90	5 to 10	2911	
Phosphor-bronze wire**	B159	0	0.004 to 0.022	145	0.1 to 0.6	1000	8.0
		0.028	0.022 to 0.075	121	0.6 to 2	913	
		0.064	0.075 to 0.30	110	2 to 7.5	932	

 $A = 2211 \text{ MPa} \cdot \text{mm}^{m}$, m = 0.145

THEREFORE, THE ULTIMATE TENSILE STRENGTH IS:

$$S_{u+} = \frac{A}{d^m} = \frac{2211}{(0.41)^{0.145}} = 2516$$
 MPa

THEN, FROM TABLE 10-6,

Maximum Percent of Tensile Strength						
Material	Before Set Removed (includes K_W or K_B)	After Set Removed (includes K _s)				
Music wire and cold- drawn carbon steel	45	60 to 70				
Hardened and tempered carbon and low-alloy steel	50	65 to 75				
Austenitic stainless steels	35	55 to 65				
Nonferrous alloys	35	55 to 65				

 $S_{sy} = 0.45S_{ut} = 0.45(2516 \text{ MPa}) = 1132 \text{ MPa}$ (b) Fy? we know that $T = K_B \frac{8FD}{\pi d^3}$ AND Fy IS the force required for $T = S_{sy}$. So, rearranging: $F_y = \frac{\pi d^3 S_{sy}}{8K_BD}$

WE KNOW $D_n = 4.5 \text{mm}$, so $D = D_{a} - d = 4.5 - 0.4 \text{Imm} = 4.09 \text{ mm}$ THE BERGSTRÄSSER FACTOR IS $K_{B} = \frac{4c+2}{4c-3}$ WHERE C= 1/2 IS THE SPRING INDEX. $C = \frac{D}{d} = \frac{4.09}{0.41} = 10$ $K_{B} = \frac{4(12)+2}{4(-3)} = \frac{4(10)+2}{4(10)-3} = 1.14$ SO, THE FORCE TO CAUSE STATIC YIELD IS $F_{y} = \frac{\pi (0.41 \text{ mm})^{\circ} (1132 \text{ MPa})}{8(1.14)(4.09 \text{ mm})} = 6.6 \text{ N}$

(c) $k \approx \frac{d^4G}{2D^3N_0}$

Na CAN BE FOUND USING TABLE 10-1:

	Type of Spring Ends							
	Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground			
	End coils, N_e	0	1	2	2			
4	Total coils, N_t	N _a	$N_{a} + 1$	$N_{a} + 2$	$N_{a} + 2$			
	Free length, L_0	$pN_a + d$	$P(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$			
	Solid length, L_s	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t			
	Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$			

WE'RE GIVEN $N_t = 14.5$, so $N_t = N_a + 2 \implies N_a = N_t - 2$ = 14.5 - 2 = 12.5

G CAN BE FOUND IN TABLE 10-5:

	Elastic Limit, Percent of <u>S</u> ^{ut}		Diameter	1	£	(G	
Material	Tension	Torsion	d, in	Mpsi	GPa	Mpsi	GPa	
Music wire A228	vire A228 65 to 75 45 to 60	45 to 60	<0.032	29.5	203.4	12.0	82.7	
			0.033 to 0.063	29.0	200	11.85	81.7	
			0.064 to 0.125	28.5	196.5	11.75	81.0	
					>0.125	28.0	193	11.6
HD spring A227	60 to 70	45 to 55	< 0.032	28.8	198.6	11.7	80.7	
			0.033 to 0.063	28.7	197.9	11.6	80.0	
				0.064 to 0.125	28.6	197.2	11.5	79.3
			>0.125	28.5	196.5	11.4	78.6	
Oil tempered A239	85 to 90	45 to 50		28.5	196.5	11.2	77.2	
Valve spring A230	85 to 90	50 to 60		29.5	203.4	11.2	77.2	

 $G = 82.7 GPa = 82.7 \times 10^9 Pa$

$$k \approx \frac{d^4G}{80^3 N_a} = \frac{(0.41 \text{ mm})^4 (82.7 \text{ GPa})}{8(4.09 \text{ mm})^3 (12.5)}$$

= 0.342 N/mm

(d) y_{y} ? F = ky $y_{y} = \frac{F_{y}}{k} = \frac{6.6 \text{ N}}{0.342 \text{ N/mm}} = 19.2 \text{ mm}$

(e) Ls? FROM TABLE 10-1:

Type of Spring Ends							
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground			
End coils, N_e	0	1	2	2			
Total coils, N_t	N _a	$N_{a} + 1$	$N_{a} + 2$	<i>N</i> _{<i>a</i>} + 2			
Free length, L_0	$pN_a + d$	$P(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$			
Solid length, L_s	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t			
Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$			

 $L_{s} = d(N_{t} + 1) = (.41 \text{ mm})(14.5 + 1) = 6.36 \text{ mm}$

(f) L. TO AVOID YIELD? $L_0 = L_s + y_y = 6.36 + 19.2 \text{ mm} = 25.6 \text{ mm}$ (q) IS BUCKLING POSSIBLE? THE ABSOLUTE STABILITY CONDITION IS: $L_{o} < \frac{\pi D}{\alpha} \begin{bmatrix} 2(E-G) \\ 2G+E \end{bmatrix}$

FROM TABLE 10-5, E=203.4 GPa AND G=82.7GA WE LOOK IN TABLE 10-2 FOR A:

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

*Ends supported by flat surfaces must be squared and ground.

Lo<16.82 mm 25.6\$16.82

BUCKLING POSSIBLE!

(h) FROM TABLE 10-1:

Type of Spring Ends							
Term Plair		Plain and Ground	Squared or Closed	Squared and Ground			
End coils, N_e	0	1	2	2			
Total coils, N_t	N _a	$N_{a} + 1$	$N_{a} + 2$	<i>N</i> _{<i>a</i>} + 2			
Free length, L_0	$pN_a + d$	$P(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$			
Solid length, L_s	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t			
Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$			

$$P = \frac{L_0 - 3d}{N_a} = \frac{25.6 \text{ mm} - 3(0.41 \text{ mm})}{12.5}$$

$$P = 1.95 \text{ mm}$$

BONUS: ACTUAL Lo = 22 mm FOR MY PEN, SO THE SPRING MIGHT BUCKLE. WHAT PROTECTS AGAINST A FAILURE? WELL, THE SPRING IS REST RAINED, WHEN PROPERLY INSTALLED, BY A ROD (THE TUBE OF INK) AND BY BEING LOCATED IN A HOLE (INSIDE THE BODY OF THE PEN.)

IF INSTALLED AS SHOWN HERE, EVEN IF THE SPRING BUCKLES, IT WOULD CONTACT THE TUBE OF INK AND/OR THE BODY OF THE PEN.

SO, TO FAIL IN THE MANNER ALLEGED, IT SEEMS LIKE SOMETHING ELSE MUST BE AT PLAY.